

#### Aeolus

#### Wind Farm Control Concepts

#### **Supervisory Wind Farm Control Strategy**

Gerrit van der Molen and Petros Savvidis,

**Industrial Systems and Control** 

EWEA 2011







## **Outline of Presentation**

Introduction

- Control strategy
  - Selection and development
- Simulation results
- Summary







#### Introduction

Control objectives

Track farm active power demand

□ Minimise Wind Turbine (WT) fatigue load

Continuous control, not on-off

MPC-based strategy

Track record in large systems







#### **System Structure**







#### **Review Summary**

• Farm-control work in research stage

Based on simulation models of small WFs

- No evidence of effectiveness & scalability to large WFs
- Exception: PI strategy used in Horns Rev WF
- Fatigue loads not considered in WT power ref
  - **Exception:** de Almeida et al. work based on optimisation
    - Fatigue load different from AEOLUS proposal
      - On/off switching i.l.o. continuous load variations
- Few address nonlinearity







## **Controller Requirements**

Robustness

Wind variations

Scalability

Design procedure independent of farm size

•Algorithm flexibility

□ Farm parameters (e.g. no. of WTs, dimensions)



•MPC meets general requirements





#### **Supervisory Control System**

- 1. Nominal control ISC
  - Obtain optimal distribution of WF power reference based on wind flow model
  - Adapt to 'slow' changes in wind farm operating conditions
    - 5-10 s sample time
- 2. Reconfiguration extension Univ. of Zagreb
  - Minimize impact of disturbances on wind farm behaviour
    - Keep wind farm behaviour as close as possible to optimal
  - Actively compensate disturbances related to faster dynamics inherent to wind farm







## **Model Linearisation**

- Wind turbine
  - Use models developed by Univ. of Zagreb
    - ≻ (Re-)Sampled to 10 seconds
- Wind field
  - □ Simpler nonlinear model than WT
    - > Original field model; later more complex
  - □ Affine model + delay
    - Gain estimated by sensitivity analysis
    - > Delay = distance/wind\_speed







#### **MPC Formulation**

•Standard GPC state-space formulation

 E.F. Camacho & C. Bordons, *Model Predictive Control* (2<sup>nd</sup> Edition), Springer-Verlag, 2004

•Time-varying KF for state estimation enhanced with GPC prediction matrices to produce future output signals

> • M. J. Grimble and P. Majecki, "State-space approach to nonlinear predictive generalized minimum variance control", *International Journal of Control*, 2010

•Quadratic cost function  $\rightarrow$  QP solver online

$$\mathbf{J} = (y(t) - \mathbf{R}_{\text{fut}})^{\mathrm{T}} Q_{w}(y(t) - \mathbf{R}_{\text{fut}}) + \Delta \mathbf{u}(\mathbf{t})^{\mathrm{T}} \boldsymbol{\lambda}_{w} \Delta \mathbf{u}(\mathbf{t})$$

•Incremental model realization

$$\begin{bmatrix} \mathbf{x}(t+1) \\ \mathbf{u}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{u}(t-1) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{I} \end{bmatrix} \mathbf{D}\mathbf{u}(t),$$

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{u}(t-1) \end{bmatrix}$$







#### **MPC at High Wind Speed Low Power Demand**



SEVENTH FRAMEWORK



## MPC vs. Base at Low Wind Speed High Power Demand



## MPC vs. Base at Low Wind Speed ' Low Power Demand

industrial

systems and control





#### **RMS Reductions**

| High wind speed                       | High Pfarm | Low Pfarm |
|---------------------------------------|------------|-----------|
| Total cost                            | 0.50 %     | 1.00 %    |
| Relative power error                  | 42.50 %    | 43.00 %   |
| Relative Mtow (RMS)                   | 0.21 %     | 0.31 %    |
| Relative Mtow (STD, 10-sample window) | -0.23 %    | -0.22 %   |

| Low wind speed                        | High Pfarm | Low Pfarm |
|---------------------------------------|------------|-----------|
| Total cost                            | 2.03 %     | 2.70 %    |
| Relative power error                  | 10.77 %    | 50.48 %   |
| Relative Mtow (RMS)                   | 1.40 %     | 3.35 %    |
| Relative Mtow (STD, 10-sample window) | 13.36 %    | 36.08 %   |







Aeolus

**FP7-ICT STREP 224548** 

W: www.ict-aeolus.eu

# **Questions?**

Gerrit van der Molen Industrial Systems and Control Glasgow, UK T: +44(0)141-8470515 E: gerrit@isc-ltd.com

W: www.isc-ltd.com



aeolus ict-aeolus.eu